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1. INTRODUCTION:

The objective of this three year program is to compute the center
frequency transmission line parameters (namely DELTERV and DELTERZ, Ref. 1)
for electrodes (including buried electrodes) in a finite length single or
double electrode transducer array. These parameters are to be calculated
from electrode geometry and material constants taking mass and elastic loading,
stored energy, piezoelectric loading and external circuits into effect.

During the first year a full field theory was developed to calculate
all of the effects simultaneously, During the present year a different approach
was adopted in order to obtain transmission line model parameters that are
easily expressed in terms of electrode material and geometry. The scattering
process was separated into three categories and each was treated individually
using perturbation theory:

*First order Mass and Elastic loading

*Stored Energy Effects (Second order Mass and Elastic loading)

*Piezoelectric loading.

These were first analysed for a single electrode in an infinite array.

Section 2 describes the first-order mass and elastic loading analysis and
Section 3 describes the analysis of acoustic stored energy scattering, The
piezoelectric scattering is analysed in Section 4. This analysis, however,
does not allow for interconnections between electrodes and so is not used
directly for interdigital transducers. In Section 5 an analytical expression
for the frequency response of a single electrode in an infinite grounded array
is determined., The results of Sections 4 and 5 have been combined to get a
frequency dependent scatter matrix for a single electrode in an infinite array
excited with arbitrary voltages on the electrodes. This will be described in

the final report. The infinite array analysis for the contract requires the




scattering parameters to be evaluated only at harmonics; however, the
finite array analysis presently under development requires the scattering

parameters to be evaluated at all frequencies.

All of these scattering contributions are combined to provide a

composite mixed unit scatter matrix description for the electrode. The des-
cription is left in the scatter matrix form because the transmission line
model for odd and even harmonic scattering is different. This scatter matrix

is easily converted.to the DELTERV and DELTERZ for the odd harmonic trans-

mission line parameters using the equations derived in Appendix I.




2. FIRST ORDER EIASTIC LOADING:
A. Introducti-.u:

The problem of surface wave reflection at thin strip overlays
occurs frequently in signal processing devices. Grooved array reflectors
employ strip overlays of the same material as the substrate, while metallic
transducers incorporate strips of a material different from the substrate.

In his book, Auld(z)

has described a method for determining the first-order
reflection coefficient of a very thin strip overlay. 1In this method the
normal and tangential stresses, T , 7% , T (Fig. 1b), generated at the
Xy yy 2y
interface by the overlay are used as source terms in the normal-mode
equation for the generation of the reflected wave. The results, however,
when applied to practical cases such as grooves in ST-Z quartz or aluminum
on ST-X quartz, yield a value of the reflection coefficient that is too
high compared to experimental values.

s
In Ref.2 , the interface stresses under the overlay Txy’ T8 ,

Yy
sz are assumed to be the same as those due to a uniform overlay extending
all along the propagation path. In this section it is shown from the first
order equations that, in addition to this uniform component, a pair of delta
function shear stresses is generated at the edges of the strip due to its
finite extent. The existence of these stresses has also been shown recently

(8)

by a rigorous perturbation scheme. By incorporating the additional source
terms into the normal mode equations, the calculated reflection coefficients
for grooves in ST-X quartz and for aluminum on ST-X quartz are found to be

in close agreement with observed experimental values. The reflection coeffi-
cient calculated for grooves in Y-Z lithium niobate also agrees with the

experimental value; however, in this paper any piezoelectric effect due to

the overlay is neglected. This effect is negligible in quartz but not

necessarily so in lithium niobate.
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The present formulation thus affords a simple technique for com-
puting the first-order reflection coefficient directly from material para-

meters.

B. Formulation:
The incident surface wave (Fig. la) is assumed to travel in the
positive z-direction in a half-space with a free surface so that the surface
stresses Txy’ T , sz are zero, The wave is uniform in the x-direction

yy
and travels with a velocity g such that the wave-number B is given by

B = w/cs

where w is the radian frequency. A thin strip of height h extends along

the propagation path from z = - % to z = + % (Fig. la). Due to the

presence of the strip, there are interface stresses Tiy’ T

(2)

8 8
, T (Fig. 1b
yy’ 2y 8 )

which are the source terms in the normal mode equations describing the
change in the incident forward wave and the growth of a reverse wave.
+ -
Let A and A be the amplitudes of the forward and reverse waves.

The surface wave in general has three particle velocity components Ve vy,

v, whose values at the surface for the forward wave are written as,

v =aA' v e—sz) (la)
x X
+  + -jBz
= A 1b
vy (vy e ) (1b)
v, = A" ) e3P (10)

The particle velocities for the reverse wave vi, vs, vz are the

negative complex conjugates of those of the forward wave.(B)
- - j *
vR = A (v+ e JBZ) (2a)
X X




Jia

-A-(V; LY 20

N T < X

ATv! eI (2¢)

The normal mode equations are:

* * *
—I—d_A—=-_T%—_— [v ™ +v ™ +v Ts_] (3)
A+ dz lA l 4P X Xy Yy 'yy z zy
a

- * * * :
e o LA Ak S R o (%)
A~ dz \A'\ 4P X Xy vy yy z zy

a

where Pa is the total power per unit beamwidth in a unit amplitude surface
wave,

Equation (3) describes the change in velocity of the forward wave.
The first order theory to be described here yields the same velocity change
as in Ref. 2; so this is not discussed further in this paper. Equation (4)
describes the growth of the reflected wave. Using Equations (1) and (2),
it is written as,
1T _ Ty Tyy T2y -3282

—d'z‘"'[zl( >+22(v >+z3( )_]e (3)

+
A Vx y Ve

where

(6a)

g = —Y (6b)

z, = (6¢c)

Integrating Equation (4) from z = - 2w+ 2

+
2 5 and assuming A to be constant

over this region we obtain the reflection coefficient, r.




e

(7N

(8a)

(8b)

(8¢c)

M-
= —— = +
T A+ zllx ZZIy + z3Iz
where,
2 s
2 Tx -i2Bz
Ix = J (__2) e dz
‘a Vx
2
=2
T .
I =j2 (—ﬂ) e-JZBzd
y a Vy
"2
a
+5 Ts
I = Jz <_EZ> e—JZBz dz
z a v,
"2
C. Interface Stresses Generated by Strip Loading:
To obtain Ix’ Iy’ and Iz, we have to determine the induced stresses
Tiy, T;Y’ and T:y at the interface between the strip and the substrate. In

the first-order approximation, the particle velocities throughout the strip

can be assumed to be the same as those at the surface of the substrate due

(2)

to the incident wave.

strip of height h, From the x-directed forces (Fig. 2a),

s aT;z
= {wg' - h.—XZ
Tx = jwp hvx h. > .

From the y-directed forces (Fig. 2b),

8
T° = jwp'hv .
yy jep y

From the z-directed forces (Fig. 2c¢),

t
™ = jwp'hv_ - h.aTzz
zy z e

where p' is the mass-density of the strip.
3 7

The interface stresses are then readily determined

by considering the forces acting on a differential element dx.z of the

(9a)

(9b)

(9¢)
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Fig. 2. First-order forces acting on a differential element of the strip in
(a) x-direction
(b) y-direction

(c) z-direction.




T;z has been neglected in Equation (9b) because its first order

value is zero in the strip. The primes are used on T' , T' , and T' to
xz’ 'yz zz

denote that these are fields in the strip rather than in the substrate.
These results have also been derived in Ref. 2 using a rigorous Taylor's
series expansion for the fields in the strip.

In Equations (9a) and (9c) T;z and T;z are the stresses in the
strip which is assumed to have the same particle velocities v, and v, as

the substrate. We may write,

coo By (10a)
Xz w x X
R - (10b)
zz @ oz 2

where a; and a; are constants with the dimensions of stiffness (nt/mz).

These are effective stiffness coefficients that depend on the material of
the strip. In a strip made of an isotropic material with Lame' constants
A' and ', a;, a; are readily obtained from the plane strain equations

assuming the first order T;y to be zero.

al = p (1la)

az' =40+ ") (11b)

A+ 2

For an anisotropic strip equations similar to (11) are derived but are more
complicated.(z) However, for an anisotropic strip of the same material as
the substrate, T;z and T;x are the same as the surface values of these

quantities in the incident unperturbed surface wave,

T;z Tzz (12a)

' - (12b)
Xz Xz

] where Tzz and sz are the surface stress fields ot the incident surface wave.

9




1t will be noticed that the derivatives of T;z and T;z with respect
to z appear in Equations (9a) and (9c). These stresses have a uniform value
(multiplied by the factor exp[-jBz]) over the entire length of the strip.

a a
However, at the end faces (z = - 2 and z = +§) these stresses must be zero.

This leads to the excitation of evanescent modes around each edge which give

(6)

rise to the second order (~ (Bh)z) stored energy effects. In the present

first-order approximation we will neglect these evanescent modes and assume
that the stresses T;z and T;z remain uniform over the length of the strip
and abruptly go to zero at the edges. Because of this abrupt change, the
derivative terms in Equations (9a) and (9c) give rise to delta function

stresses at the two edges. We thus have from Equations (9) and (10),

T . o' -
S () e p e )
oy 180 2
s [
y s
T o -
_ jnhy 7,2 N, 2 a a,’
Tif ) lji:* Lkp s ~ ai) * jz (b(z * ;) - 8@ - ;))J (13¢)

where ¢, = w/B is the velocity of the surface wave.

Fig., 3 shows the spatial distribution of the interface stresses.
The delta function components of T:y and T:y at the edges of the strip were
not included in Ref. 1. Inserting the computed sfresses from Equations (13)

into Equations (8) we get,

o= KB 2y g 5“553 (148)
S

Iy = .1_(;& (pvci) ﬂ%& (14b)
S

10




I = Jic&_)_ (pnci + azt) _s_i_%% (l4c)

Z

s
Comparing Equations (13) and (l4), it will be noticed that the effect of
adding the delta function terms is to change the sign of a; and a; in
Equations (13a) and (13¢). Physically, this means a change in the sign of
the component of reflection die to stiffness since a;, a; represent stiffness
while p' represents mass.

’Cs>T_*’1
\jh Vx

1.
L
.61\
— (prcd-ay)
T3 3 !
2 ¥ 2
-1
(a) vl
(LlL) Ty
18h vy
1
— p'cd
[o] [+ :
-z *32
(b)
<ELJ Ty
. 18N/ v
R
—(pcd-ay
o] J :
+32 {i
‘\
-A a‘
(c) ﬁ ! «P-168%

Fig. 3. Spatial distribution of (a) x-directed, (b) y-directed, and

(¢) z-directed interface stresses.

11




Combining Equations (14) with Equation (7), we have,

[ ] ]
2tz ¥ z3) N (“le + “éz3)

w w (15)

r = jsinga . (80 [p'c?

D. Application to Specific Cases:

In this section Equation (15) is applied to obtain the first-order
reflection coefficients per strip for: (1) aluminum on ST-X quartz and (2)
Grooves in ST-X quartz. In each case the computed value closely matches
the experimental value reported in Ref. 4.

The values of relevant field quantities at the surface for the
unperturbed surface wave in ST-X quartz are given below for a total power

12

per unit beamwidth Pa = 10""w Watts/m. These values were computed from the

field equations using the method in Ref. 5.

v = 40 w <€ -90° m./Sec.
+

vy = 4.24 w < +90° m./Sec.
+

v, = 2.79 w €0 m./Sec.

Tzz = 2.42x1011 B < 180° nt./m?

sz = 2.66x1010 g < 90° nt./m%

The mass-density and surface wave velocity for quartz are,

2651 kg/m%

©
H

c 3158.5 m./Sec.

)

We thus have,

N
—

14

= -4x10° m?/nt.

el

12




zZ
_mZ = -4.5x10"*% n?/nt.
z
75 = +1.95x10-12 mg/nt.

Using these values in Equation (15) we get,

h ' % e
r = j(sinpa) . [-,43 fp— + 50066 %5 + 32 5 ] (16)
pe pC

This equation gives the reflection coefficient of a strip of any material
on ST-X quartz. The strip material is characterized by p', a;, and a;, p

being the mass-density of quartz.

(1) Aluminum on ST-X quartz:

Aluminum has Lame' constants A', p' and mass-density p' equal to,

2

A" = 6.1x10'0 nt./m?
p' o= 2.5x1010 nt./m?
. 3
p' = 2695 kg. /m"

Using Equations (lla) and (11b),

= 7.75x1010 nc./m%

Q—
I

! 2.50x1010 nt./mg

[+
]

We thus have,

p'/p = 1.017
L, 2
a'/pc” = 0.945
x' s
' 2
a'/pc. = 2.930

i
i
|
!




Hence from Equation (16),
P h
r = j(sinBa) . (.507 i)

For a reflector array at its fundamental stopband with equal electrode and

gap regions, sinfa = 1, so that the reflectivity per strip is .507 %.

(2) Grooves in ST-X quartz:

In this case the overlay is of the same material as the substrate;
as discussed in Section C, T;z and T;x in the strip m;y be assumed to be
the same as their jurface values for the unperturbed waves which are listed

at the beginning of this section. Using these values,

o = - Y _zz _ 8.67x1010 nt./m?
z B v
Z
T
o = -2 %2 _ 66551010 ne. /2
X B v
X
We thus have,
p'/p =1
1 2 =
(¢4 /pC = 2514
X s
a'/pc = 3,278
z S

Hence from Equation (16),
s fs h
r = j(sinBa) (.636 ;)

A similar calculation with Y-Z lithium niobate as the substrate material
yields,
h ' o' .
r = j(singa) . 3 [- .317 ﬂp— + 272 -5 _| (17)
pc
s

14




where p' and a; describe the strip material and p is the mass-density of
lithium niobate (pc: = 5.72x1010nt./m?). a; does not appear in this equation
because v, = 0 for a surface in Y-Z lithium niobate. For grooves in Y-Z

lithium niobate we have,

@' = - 222 _ 9 092x10%L nt. /m?
4 B v
¥4
so that,
p'/p =1
v, 2
a'/pct = 3.657
z S

Equation (14) then yields,

r = j(sinBa) . (.678 %)

This result too agrees with experimental data. However, as noted earlier,

we have neglected the electrical term in the normal mode equation.

E. Conclusions:

In this section the first-order reflection coefficient of strip
overlays on anisotropic substrates is obtained from the well-known normal mode
theory. An analytical expression for the reflection coefficient is derived
for arbitrary anisotropic strip and substrate materials. The computed values

agree well with experimental values for grooves in ST-X quartz and Y-Z

lithium niobate and for aluminum on ST-X quartz.




3. STORED ENERGY SCATTERING:
A, Introduction:
The propagation of surface acoustic waves through a periodic array

(6)

of grooves or thin strip overlays has been modeled as a repetitively mis-

matched transmission line with reactive energy storage elements (jB) at each

discontinuity (Fig. 4). The mismatch parameter AZ/Z has been related to the
elastic constants of the substrate and strip material using various theore-

tiecal approaches.(7’8’9)

However, no theoretical analysis relating the
energy storage elements to material constants has yet been described.

The energy storage element (jB) is physically attributed to the
excitation of evanescent modes. It is a quadratic effect of order ~ (h/x)z,
where h is the height of the strips; this is in contrast to AZ/Z which is a
linear effect of order ~ (h/A). This energy storage produces two specific
effects on the dispersion curve which have been verified experimentally: (1)
it leads to a shift in the center of the fundamental stop-band, and (2) it
predicts a stop-band at the second harmonic.

In this section we will describe a model using a first-order pertur-
bation analysis of the strip overlay that predicts these effects and shows
their physical origin. Piezoelectric effects are neglected in this paper;
only mechanical effects are considered. However, anisotropy is accounted
for. The results for a few practical cases involving aluminum electrodes
on ST-X quartz and grooves in ST-X quartz are in fair agreement with re-

ported experimental values.

B. Secular FKquation:

The field quantities for a wave propagating in a periodic structure

(10)

satisfy Floquet's Theorem, The particle displacements and the stresses at

16




Fig. L. gurface wave propagation in a periodi¢ array

(a) Physical Structure

(b) Equivalent Circuit




the interface between the layer of strips and the substrate may by

written as,

+ @
0= ) 0" eeis™o (182)
+o
T, o= £ o582 (18b)
O
where, B(n) = 8 + n.2u/p (19

p being the period of the strip array. Here i represents the stress at the

interface. The second subscript is implied to be y and is dropped for con-

: . n t
venience. P is the surface wave wavenumber and B( ) represents the n h

space harmonic,
The relationship between t and U required by the periodic array of

strips is determined using a first-order perturbation analysis; this analysis

(11)

is basically similar to that described by Auld in his book with a modifi-

(9)

cation to handle edge effects. Using this analysis, a matrix [L], charac-

teristic of the strip material and geometry (Fig. 5), is evaluated in

Appendix IT such that,

+c

SRS } Lim gyt A (20a)
J

’

TN

- o
m’

ke
3
]

where h is the height of the strips. A first-order perturbation analysis
yields stresses that depend linearly on (Bh). The strip array being periodic
couples together different space harmonics. A particle displacement at one
spatial harmonic, n excites stresses at another spatial harmonic, m.

This is in contrast to the uniform substrate which does not couple

different space harmonics. A matrix [S], characteristic of the substrate

material (Fig. 5), is evaluated in Appendix ITI such that,
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Fig. 5. Stress-displacement relation for a semi-infinite substrate and

for a periodic array of strips.
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i=x,y,z

S s,

Since the uniform substrate does not couple different space harmonics, we

have

sM™M™ -0 form # n (21)
ij

The [L] and [(S) matrices thus describe the elastic properties of the periodic
layer of strips and the uniform substrate respectively. The [S] matrix repre-
sents an exact analysis of the semi-infinite substrate, while the [L] matrix
is based on a first-order perturbation analysis of strips.

The stresses at the interface are equal and opposite for the sub-

strate and the strips, so that equations (20a) and (20b) are combined to yield,

+® z
N \ (m,n) (m,n)] ,(n) _ i=x,y,z
L L [Sij t ALy ] vy =0 i (22a)
n= -« J=X m = _m,m
In matrix form,
[1s1 + cam.111] (0] = {0} (220)

where {U} is a 3M x 1 column vector and [S] and (L] are 3M x 3M matrices, if
M is the number of space harmonics being considered. The factor 3 arises
because of the three dimensions, x, y, and z.

Equation (22b) is the secular equation for the infinite set of space
harmonic amplitudes. The elements of [S] and [L] are functions of B and w so
that in principle, one can solve for the dispersion relation B(w) in any degree

of truncation approximation by setting,

det {SL] = 0 (23a)

where

{sL] = {s] + (pgh) . (L] (23b)




In the limit h - 0, the strips vanish and there is no coupling between the
space harmonics. Equation (23a) then becomes det [S] = 0 and this yields

the dispersion curve for surface waves in a substrate with a free surface.

C. Classification of Space Harmonics:
Before we discuss the solutions to equation (23a), it is useful
to give a physical interpretation of the different space harmonics., We
note that,

B(0) -8 (24a)

is the wavenumber of the forward propagating surface wave. If B is at one

of the stopbands, we may write,
B=N.mn/p (24b)

where N is an integer. N = 1 represents the fundamental stopband, n = 2
represents the second harmonic stopband and so on. We then have from

equation (19),
B(-N) = B (24¢)

so that the space harmonic (-N) represents the backward propagating surface
wave, As may be expected, at the stopbands the forward and backward waves
are coupled together.

Now, the space harmonics with -N < a < 0 have lB(n)l < lBI, and
thus couple to propagating bulk modes that carry power away from the surface.
The space harmonics with n < -N or n @ 0, on the other hand have lB(n)l > 1s].
They couple to evanescent modes that store power reactively near the surface.

To summarize:

() n

0 represents the forward wave.

(2) n = -N represents the backward wave.




(3) -N € n <0 represents propagating bulk modes that cause energy loss.

(4) n < -N and n ® 0 represent evanescent modes that cause energy storage.
This is illustrated in Fig. 6 for N = 3., 1t will be noted that at the funda-
mental stopband N = 1 so that there are no space-harmonics in category 3. It
is for this reason, we believe, that bulk power losses are much larger for
resonators operated at the higher harmoincs than for those operated at the

fundamental stopband.

Incident
Svanescent Reverse Propogating Forwara Wave Evanescent
Modes Wave  Bulk Waves Modes
B(O) =N %
—_— el —_—— —~ A

B(-S) B(-4) B(-N) B(-Z) B(-l) B(l) B(Z) ,49(3)

N N R N O O

B  er  aw 2w o 2r 4r  &r  &r
e 2 P P PP P B

Spatial Frequency o- 1723
Fig. 6. Spatial harmonics excited by an incident wave in a periodic array

at the third harmonic stopband (N = 3).

D. Coupled-Mode Approximation:

In solving Equation (23a) for the secular determinant it is common
to use the coupled-mode approximation near a stopband. At the Nth stopband
the space harmonic amplitudes for n = 0 and n = -N (representing the forward
and backward space harmonics) are the largest and only these two are retained.

We then write,
[51,€0,0) 51.(0,-N)

det =0 (25)
L?L(‘N’O) SL(-N’-N

Here only two space harmonics are retained and the matrix is really 6x6 since

0 -N
3 dimensions are associated with each space harmonic. Thus SL(O’ ), SL(O’ )

1]




-N,0 -N, -N
SL( ,0) and SL( »-N) represent (3x3) matrices, but for clarity these are

written as single terms.

It will be noted that the off-diagonal terms in Equation (25) come
from the periodic strip array. The substrate matrix [S) is zero between

different space harmonics. Thus the off-diagonal terms are all of order

h/k. For example,

sL(ON _ (gny L 00N (26)

since
S(O"N) = O

The dispersion curve can be obtained from Equation (25). Equivalently the

(12)

normal-mode theory can be used. Either approach yields the mismatch re-

flection represented by AZ/Z, and the results agree with other computa-

(7,8,9)

tions and with experiment. But this coupled mode approximation does

not predicc the "stored energy" effect; there is no shift in the centers
of the stopbands of order (h/x)z. At the second-harmonic (N = 2), for equal

strips and gaps it is found that,

L(O,’Z) = L('Z,O) =0 (27)

which means that no stopband is predicted at the second harmonic since for-
ward and backward waves are effectively decoupled in this approximation.

It will be noted that carrying the perturbation to second-order in
the analysis of the strip-array (that is, in calculating the matrix [L]) does
not yield the stored energy effect; there is still no coupling between the
ﬁ forward and backward waves at the second harmonic,

To summarize, the coupled-mode approximation gives us the AZ/Z in
the transmission line model, but not jB (Fig. 4). Carrying the perturbation

analysis of the strips to higher orders only improves AZ/Z to higher orders.
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E. Beyoud the Coupled-Mode Approximation:
To obtain the '"stored energy'" effect one needs to go beyond the
coupled mode approximation. To illustrate the point, let us include one
space-harmonic, n in addition to 0 and -N representing the forward and

backward harmonics. Equation (22b) is written as,

51,409 51.(0>-M) SL(O’n)—] u(®

s (MO NN GN) -N) =0 (28)

§1.(1,0) s (7, M) g (1,1) g y(®
From thes; equations U™ is eliminated to yield,

511 (0,0) ot (0N | (0

=0 (29)

q N0 LGN (W)
where
st (@0 g (0,0 g (0, (s -1 g1 (8,0 (30a)
spr (0 g (0 g Oum) gy () -l g (0, oW (30b)
st (B0 g GNO g N gy ()1 gy (0,0 (30¢)
st (NN NN (-Nn) o (ayn) -1 g (N (30d)

Equation (29) is of the same form as obtained from the coupled-mode approxi-
mation but the matrix elements are modified as give by Equations (30). The
dispersion curve is obtained by setting,

SLI(O’O) SL'(O'-N)

det = 0 (31
SL'(-N’O) SL'(-N’-N)

but now the effect of the space harmonic n is included by using the

corrected matrix elements SL' instead of SL.




——————

It will be noted that the correction terms in Equations (30) are
each of order (h/)\)2 since they contain the product of two off-diagonal terms,
each of which is of order h/A as discussed previously. Moreover, at the

second-harmonic stopband SL'(O"Z) # 0 (though SL(O’-Z)

= 0) because of the
extra term in Equation (30b) arising from the additional space harmonic
considered. The dispersion curve now shows a shift in the center of the
stopband (through SL'(O’O)) and also has a stopband at the second-harmonic

L,(O;Q))' These effects are of order (h/)\)2 and arise from the

(through S
inclusion of the extra space harmonic representing a propagating or an
evanescent mode as discussed previously. The corrections in Equations (30)

are readily generalized to include as many other space-harmonics as desired:

sut (0,0 _ (0,00 Z s.(0sm g(mm) g; (m,0) (32a)
sp1(0M _ g (0,-0) T s1(0sm) g(m,m) g (m,-N) (32b)

and similarly for sur (M0 Lng SL'(-N"N); where,

-1
[} = [Si] (33)

[SL] being the matrix [SL] with the rows and columns corresponding to 0 and

-N deleted. The summation over n,m can be carried out over as many space-

harmonics as desired and the total "stored energy' effect is thus obtained.
Equation (31) can then be solved, in principle, to obtain the

(12)

dispersion curve. Instead we will use the normal mode theory to calculate
the phase-shift and the reflection per periodic section. This is simpler to

implement than the direct solution of the secular equation.

F. Normal Mode Approach:

In the secular determinant approach, we determine the appropriate

w for a given B8 so that equation (31) is satisfied. A non-trival solution
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U(O), (-N)

U is then obtained that satisfies Equation (29). Using the normal
mode theory the problem is approached differently. To start with we assume
that we have an unperturbed surface wave of amplitude N (Fig. 7). This
- | ez BRI vy NN wxrsrs B A

- e - - o an

!
— A+ AAT

AT —

|
| |
AN =— | ! ;

z=-p/2 z=+p/2 .

Fig. 7. Surface wave scattering from a single strip in a periodic array.

wave is a normal mode of the semi-infinite medium so that w and B are re-
lated by,

w = Bcs (34)

where cg is the velocity of the surface wave on a free surface. It will be

noted that the dispersion relation (34) is a solution of
det [S] =0 (35)

rather than a solution of equation (31).
Since this wave is not a normal mode of the periodic structure,
Fquation (29) is not satisfied and a residual stress distribution is set up.

I1f the incident forward propagating normal mode has a particle displacement

(0)

u (u being a vector with three components) then the space harmonics «

(-N)

and of the residual stress are given by,

T(O) (0,00

= -SL' (36a)

(‘N) = -SL'(-N’O) u

T

(36b)




This stress distribution now generates a forward wave of amplitude

+ -

M and a backward wave of amplitude M~ (Fig. 7). AA+ is in quadrature to
+

A, leading to a phase-shift of the forward wave; the phase-shift, A¢, per

periodic section is given by,

Ap = mt/at (37a)

and the reflection coefficient, r, per periodic section is given by,

-+
r=0HM/A (37b)
. (12)
A¢ and r are related to the stress t by the normal mode equations:
_dwp * (0)
A = ;5 u.t (38a)
=42 W (38b)
4P
a
where Pa is the power carrier by the normal mode. Using t(o) and t(-N)

from Equations (36) and inserting the subscripts running over x,y,z ex-

plicitly (which we dropped earlier for convenience), we have,

z
o 3 \ ,(0,0)
Ap = -jp Z SL i ZiJ. (39a)
i, j=x
= i \ l(-N’O) ' N
r=-jp ) SL i vA . (39b)
i,j=x
where %
wu, u,
Zij = —ZF;—l (40a)
wuiu.
\] —
Zij = apa (40b)

Knowing A¢ and r we can deduce AZ/Z and jB for the transmission line model

(Fig. 4). By cascading the transmission matrices of successive periodic




sections, we can then obtain the dispersion relation for the overall array.

This normal mode approach gives the same results as the direct solution of
the secular equation for small perturbations, but is easier to implement.
Moreover it yields the equivalent transmission line parameters directly,

We will now separate the first-order and the stored energy effects

in Equations (39) using the expressions for SL' given in Equations (30).

(1) First-order effect:
The first-order effect is obtained from Equations (39) by using
only the first term (SL) for SL' from Fquations (30). This is the result

obtained from the coupled mode approximation. In this approximation we have,

4
o i (0,0)
bo = -3 (Bp) (Bh) }L L. Zij (41a)
i,j=x B
¢ (-N,0)
r=-j(gp) (BB) ) Lij z i (41b)
L,j=x B

Here we have used SL in place of SL' in Equations (39) and used the fact

that (Equation (22a)),

z z
v (0,0) ~ \ ,(0,0)
/. SL. . u, = (Bh) . Lij U (42a)
j-x j=x
since z
VL0000
L sij | 0 (42b)
=%

u being the particle displacements of a normal mode for the semi-infinite

substrate. In Equation (41b) we have replaced SLi}N’O) Li;N’O)

-N,(
since SEjN’)) = 0.

by (Bh) .

Equations (41) show that the phase-shift and reflection obtained

trom the coupled mode approximation is linear in (h/3). Using the expres-




sions for Lij from Appendix I this is seen to be the same result as in

Reference 9.

(2) Stored energy effect:
The stored energy effect is obtained from Equations (39) by using

the second term for SL' from Equations (30):

z

2 7 %o
Ag = 3 (Bp) (Bh) L ij Zij (43a)
i,j=x
2 v g0
r = j (Bp) (Bh) ij Z'ij (43b)
i,j=x B
where
(0,00 _V ¥ (0,n) (n,m)
Hij Mn,m L.&;x Fik Y Lffj (44a)
(-N,O) _ Y (—N)n) (n)m) (m)o)
Hy; Tl s Z’=x Lik S Ly (44b)

Hera [SL] has been replaced by (Bh).[L] since only the matrix elements be-
twaen different space harmonics are involved, for which [S] = 0. In Equations
(44) the summation over n,m is carried out over as many space harmonics as
desired.

The {L] matrix describing the layer is calculated assuming that
it is a thin strip uniformly excited across its thickness. This is an invalid
assumption at high spatial harmonics, since the penetration depth at the nth
harmonic is of order ~ 1/B(n). Thus, the matrix element L(m,n) is overestimated
by a factor B(n)h at high values of n. An exact analysis of a finite thickness
strip is rather complicated; a good approximation is to view the strip as a

single-mode lossy transmission line in the direction perpendicular to the

surface. The transmission line is '"'shorted'" (zero stress) at the top and [L]




represents the 'impedance' (stress/displacement) at a distance h from the

load. From transmission line theory the impedance Z depends on h through

the relation, ¢

(n)h)
(n)

(n?bl
(n)h)

- exp(-~-B
h) + exp(-8

7 exp(B

Z
o

exp(3

~ 2

o s(n)h for B(n)h << 1

where Zo is some constant and the decay constant along y is assumed equal

to S(n) for the nth harmonic. The thin strip approximation is valid when
S(H)h << 1 and yields an impedance linear in h. An approximate correction
for L(m,n) is obtained by multiplying it with the factor,
1 exp(S(n)h) - exp(-B(n)h)
5(n)h exp(S(n)h) + exp(-B(n)h)

This correction factor is clearly not precise; however, the end
result is quite insensitive to the precise nature of the correction. This
is because the chief contribution to the stored energy effect comes from the
lower space harmonics which are unaffected by the factor: the higher space
harmonics contribute very little individually. The inclusion of the factor

does serve to eliminate spurious contributions arising from the cumulative

effect of a large number of space harmonics.




G. Results:
(1) First-order effect (Equations (41)):
Equations (41) give the first-order Ap and r as oblained trom
(0,0) L(-N,U) E
ij :

the coupled-mode approximation. Using the expressions for L and

id
T .
.;, A¢ and r can be evaluated in a a

from Appendix I and noting that 8 = N
straightforward manner. The reflection cocfficient is equal to AZ// for
the transmission line model. The results agree with Reference 9 and the 1
calculations are not repeated here. For grooved arrays, A¢ is found to be
zero thus predicting no shift in the stopband center. Ior electrodes of a
material different from the substrate a non-zero A¢ is obtained, but this
is of order ~ (h/A) and corresponds to a change in velocity of the wave

under the electrode material equal to that due to a uniform layer of the

electrode material. Thus, this approximation yields a repetitively mis-

matched transmission line model with different velocities in the zaps and

under the electrodes. The change in wavenumber, AB, under the elecirodes

is obtained from A¢ using,

8 se )
5 BT p (45)

where T is the ratio of the electrode width, a, to the period, p (Fig. 5).

(2) Stored energy effect (Equations (43)): g
Equations (43) give the Ag and r due to the stored energy effect.
(i) Phase shift at the fundamental:
The phase-shift at the fundamental was calculated for aluminum
electrodes on quartz. We compared our results to the experimental data provided
to us by Rome Air Development Center for a double electrode transducer ou ST-X

quartz. The electrodes were made of 80 R of chromium and 820 R of aluminum.
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The line width was 1.1729m corresponding to a fundamental wavelength of
9.3832um. The fundamental frequency of a double electrode transducer is at
half the frequency of the first mechanical stopband. We calculated the
change in velocity of the surface wave in propagating under the electrodes.
The results are shown in Table I. 7The piezoelectric effects on ST-X quartz

are smaller (K2/2 = .00055) and have been neglected. It is seen that a

Table I: Av/v for adouble electrode transducer on ST-X quartz.

Calculated Measured
st
1 order Stored Energy Total
.00065 .00385 .0045 .0048

major part of the lowering of velocity is due to the stored energy effect
rather than the linear first-order effect.

Figure 8 shows the results for grooves in ST-X quartz with Kv
given by,

by = (Bp) . K, . (/M) (46)

The experimental points are taken from Reference 13 and show fair agreement.
It was pointed out to the author by Melngailis that the large scatter in

the experimental data could possibly be due to varying groove shapes; the

present analysis assumes a rectangular shape thowgh other shapes can be
accounted for by a modification in [L].

The phase-shift for grooves in Y-Z lithium niobate was calculated
to be 25(h/k)2 at h/x = .01, This is in agreement with the measured results

in Reference 14,
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Fig. 8. Kv vs h/\ for grooves in ST-X quartz. Experimental points are

taken from Reference 13.




(i1) Reflection at the second harmoniec:

The reflection per strip at the second harmonic for grooves in
Y-Z lithium niobate was found to be 22(h/)\)2 at h/x = .01 which is about
half of the measured value in Referenc» 6. The reason for this discrepancy
is not clear to us.

The reflection coeffiecient, r per strip was calculatei at the
second-harmonic stopband for aluminum electrodes on ST-X quartz and for

grooves in ST-X quartz. The results are shown in Fig. 9 where K_ is

. R
60 ,
30 =
40 -]
@
x
30 =
(&)
20+ -
10 | | | |
0.0C5 001 0015 Q.02
h/x XPw 1747

Fig. 9. KR vs h/) at the second harmonic for,

(a) Grooves in ST-cut quartz

(b) Aluminum electrodes on ST-cut quartz.




given by,

r = KR . (h/)\)2 (47)
This result has not been compared to experimental data.

H. Summary:

A theoretical model for surface wave propagation in a periodic
array of thin strip overlays has been developed. The 'stored energy' effect
is modeled by extending the analysis beyond the coupled mode approximation.
The results are discussed for aluminum electrodes and grooves in ST-X quartz

and Y-Z lithium niobate.
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4, PIEZOELECTRIC SCATTERING:
A. Introduction:
} The propagation of surface waves in an infinite periodic array

of thin conducting strips has previously been analysed(ls-ls); and an equi-

(19)

valent 'mixed circuit' model has been obtained by matching dispersion
relations near the stop-band, In this section we adept a different approach
that leads directly to the scatter matrix of a single strip in a periodic
environment. We assume (Fig. 10) that an unperturbed surface wave is inci-
dent on a strip within a periodic array. The incident wave has a surface

potential ¢S given by,

- -jB=z
¢s = ¢+ e (48)

where B is the wavenumber of the unperturbed wave. The charge induced in
the strip by this surface potential is determined from the electrostatic
equations. This charge is then used as the source term in the normal mode
equations(zo) to determine the change in the incident wave, A¢+ and the gener-
ated reverse wave, Ap . The scatter matrix describing a strip in a periodic
array is thus obtained. Finite arrays (neglecting and effects) are then
readily analyzed by cascading the transmission matrices of successive strips.
Since the formulation is on a strip by strip basis, assuming local periodicity,
slow variations in periodicity and metallization ratio may be accounted for,
The advantages of this approach are:
(1) The scatter matrix of each strip is determined directly
at all frequencies so that the model is valid outside
the stopbands as well,
(2) Analytical expressions are obtained for each scatter
matrix element as a function of metallization ratio

and frequency.
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(3) The analysis can also be extended to include bulk wave

generation by using the charge induced on the strips as
the source term in the normal mode equations for the bulk
waves,

The formulation presented uere is directly applicable to periodic
arrays that are electrically periodic as well. This includes open- and
short-circuited reflector arrays and multistrip couplers. An extension of
the analysis to transducers with the electrodes arbitrarily interconnected

is being developed.
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Fig. 10. Reflection and transmission of surface acoustic waves at an

electrode in a periodic array.




B. Charge Listribution Induced in a Periodic Array by a Propagating
Surface Wave:

In this section we will determine the Fourier components of the !
induced electrostatic field in a periodic array due to an incident surface

4 .
wave. For convenience dimensionless variables s, s and 9 are introduced.

§ = =22 (49a)
p
= kp

s =3¢ (49Db)

s - Bl (49C)
2w

where, 3 is the wavenumber of the surface wave
and 8 =k + N. 2u/p,
N being a positive integer such that 0 <k < 2u/p. 1t follows

that,

’

s’=s + N (49d)

where 0 <s < 1.

The surface potential due to the unperturbed wave is given by

o = o e-j(s+N)6

s A (50a)

In the presence of the periodic array of conducting strips an additional
electrostatic field is generated. This field is periodic in z and its 4

surface potential ¢e is written in a Fourier series as,

=\ -j(s+N) 6
8,(9) ) P (50b)

The total surface potential is the sum of the wave potential and the

induced electrostatic potential.

@
e-J(s+N) ] + 3

_ -j(a+n) ©
o(8) =2, nz“%e




!

The tangential electric field, E_ at the surface is ottained from (5})

vA
E_(8) = izm e':'s’a [(S!—N)Q o NG v +0n)9 -)n8 (52a)
Z p + L (s+n) a ® - a

n= -®

The electrostatic part of the field also gives rise toanormal electrical displace-

ment, Dy at the surface (or acharge distribution) that is written from Laplace's equation .

©
) “jn § )
L S (S+—n)®n e J (52b)

n= -«

Lo 359
D () =2 (e € e [:

where, S sign of (S+N)
+1 forn >0
= -1 forn <0

since 0 <s < 1,

and Ep is the effective permittivity of the substrate and EO is the permit-
tivity of the medium above the substrate,.
The Fourier coefficients an have to be determined such that the

boundary conditions imposed by the array are satisfied (Figurell):

E, (8 =0 6] <a (53a)
D, (&) =0 A< o] <n (53b)
where A=TMm

T being the metallisation ratio.

These conditions are written from Equatioa (52a) and (52b) as,

@«
-iNO N -
W) a2 lel < & (S4a)
nse A
-in®
s & eI g A< |8] <m (54b)
n n
n= -®
where, An = (s+n)¢n (54¢)
(s+N)¢+
39
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Fig. 11. Same as Figure 10 with dimensionless variables.
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It is shown in Appendix IV using the properties of the Legendre polynomial

that conditions (54a)and (54b) are satisfied if we write,
N

=\
A ) &S Pn+m-N-l(COSA) + a

n " 2oa S P (cosd) (55)
m=0 nn

N+1

where « is any arbitrary number and «

N1 to ay are determined from

0

the following ecuations:

a = - % (56a)
L-1
\
= - A =
ay 40 a Pl_m(cos Y , £=1 to N (56b)
m—

t .
Here Pn represents the n h Legendre polynomial and Pn for negative n is

obtained from the relation P-n-1 = Pn. The charge distribution in the

array is written from Equations (52) and (55),
M1 o
2n -js® rs \ -jn@ 7
8) = —
D (&) = = (E+ €) e7 (st a | e Z o yop(cosbe |
m=0 n= -=
(57)
The terminal voltage and current at the strip are shown in Appendix V to be,

\as

1 i

(s +N) o,
m=

L N-m+l m PN- s(-cosA)
(-1 a ilas (58a)
m sinms

<
n

' M1
ju(Er €)W 6+N0, m2=1) « . 2m B (cosd) (58b)

—
[}

where W is the length of a strip perpendicular to the direction of wave

propagation. a to Y are uniquely known from Equations (56a) and (56b)

; QV+1 has to be chosen so that the correct ratio V/I = Z is obtained from

! Equations (58a) and (58b) .

It is convenient to divide GN+1 into two parts:
o = o .+ av 5
w1 T w1 T %l (59)
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where 1V+l 1s chosen such that the sctrip voltage (s zero. This correszunis

to the case when all the strips are shorted together. =-rom equaz.cn (53a),

§ N-m P {-cosd)
. \ o« N-ors
a., =) (=) m (60)
NS —
m=a0
Ps_l(-coss)
7 . . . .
2y, 4 1s also obtained Irom Equation ()8a):
v vsinms
s+N) 2 «, ,= (61)
+ N-1

TP (-cosl
g-1

Port 3 (1 ectnical )

Q/ ll lj]/ /
— -0

. he™ Port 2 = (cpy 4 A0 1T
(Aconstic)
: Port | jorr
(h e AP e BT (Acoustic) < e
0=-r 0=+ w1

Fig. 12. Scattering at an electrode in a periodic array.




C. Evaluation of Scatter Matrix for a Single Strip:

In this section we will use the induced elactrostatic field de-
rived {n equations (56)through (61) to obtain the scatter matrix of a single
strip. To start with we define a (3x3) matrix A that relates the fields at
the two acoustic and one electrical ports (Fig. 12). All values are refer-

enced to the center of the electrode.

-
o) Fap A, A 22\
3+ o= Ay A, A (2. (62a)
P Ay, A A L"
31 %32 433 /

The (I1x2) sca:iter matrix, § relating the two acoustic ports is easily obtained
from the A-matrix by setting

I =V/2Z (62b)

'S

wherz 7 is the extarnal load at each strip. Using equation (62h) in equation

(62a) we get,

- ¢
o, = 2 S S °+1
s ) (63)
o T =2 520 a2 >
where,
A A
13 731
S S VN ¥ 3] (68
A A
13 732
S,y = A,, - rOREEVCEY (64b)
i = L eiZ)
2 12 33
A’?" A N
S.. = A - .;'.._2.".__'__ (64¢C) 1
- :- A -~ /‘. PR
33
A, AL
S.a T AL - -_\&—3'—-3—7-—; (644D




We will now evaluate the elements of the A-matrix. The induced
elecrcrostacic field was derived in the last section assuming an incident wave
only from the left; that is, ¢ was set equal to zero. We will thus evaluate
the A-matrix elements in the first and third columns (Equation (62a)). The

elements in the second column are written from the symmetry of the acoustic

ports:
A0 = Ay
A0 T A (65)
Aqp T Ay

Using equations (58b), (59), (60) and (61) the terminal current, I
is written as the sum of two parts--one proportional to ¢+ and the other pro-

portional to V. Comparing with equation (62a) , we obtain A and A33.

31
N N-m
- ; (-1) Ps l(cosA) P“ m+s(—cos£}-
= jw(< . sl - N-
A31 it p+ eO)W Zn(S+N)-:A o(m\P:\:-er»s(CGSA) M P (-cosd) /2
m=0 s-1
(66)
PS l(cosA)
= 2jw(g € .51 —
Ayq jus( o €, W.sinms P (-cosD) (67)
A312+ represents the strip current with V = 0, that is with the array shorted

while A33V represents the strip current due to a voltage V with no incident

wave 3 . It will be noted that since the fields were assumed periodic, a
voltage V means that the voltage at each strip has the same magnitude V but
is delayed in phase with respect to the previous one by 2sm.

and A,,. This is done

Our next step is to evaluate All’ A13, A21 23

by using the induced charge distribution Dy(g) obtained in the previous section
(Fquation (57)to determine the change in the forward wave, A@L and the zener-

- . 20
ated reverse wave, Az  from the normal mode equatlons:(l )
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Integrating over one period from -w to +7w and assuming 3, constant over

the period,

|

+1T

since | d9
dom

H

[}

1T

since . d3

Y]

-

as shown in Appendix VI, Using Eguations (59), (60) and (61) to replace

& , Ln equations (6%9a) aad (byb), 3¢, and L are written as the sum of

N+ 1

two parts--one proportional to 2 and the cther proportional to V. This

7ields the desire

. 1 1 :

12--: e {—]"t LD (@ el (M) 3 (68a)
T e <, |

-e EARNIPNIRSIC (b8b)
A p+ 0 LV y

V+l ,
ju’v (s+N) - / a ‘;g é bl ( osd) e -j(n-0)3
=20 (s \ ’ R c
Iv =D - m o e n+m- N-
s W1
{—VX 21 (s +N) Zoam ?__,(cost) (69a)
m=
- - 8
e $(a-W = 2m 1L n=N
= 0 otherwise
V+l o
ié— (s+N) ) de o (cosA)e-J<25+n+N)a
{v Ln m J / n+m-N-1
m= i
n=s -8
N+1
| av! N
JL—- .21t(s+N) « P, ) (cosd) (69b)
v { o=p 2 2025 -m
Y i (25+0+N) @
\ - + 0+
) By (cesde ] VT am . Py (cosb)
= -

a

d A-matrix elements.




SR ———

The matrix elements derived earlier are reproduced here for convenience:

A = 273(s+N) .

. - -
jw (g4 ) WL

Fav!
A = jl\—1t . 2mw(s+N).
T Jiv ( T )
N -1y (-cosi) P (cosd) -
‘ o (cosd) + N-mes W2s-1"
ot |5 cos
m . 2M28-m —cosd -
m=0 Ps-l( )
(70a)
Iivl 2sinms PN+25_l(cosA)
PR | bt (70b)
13 LV Ps_l(-cosA)
Lav!
Ay, = 1+ jl=1r . Zu(s+N)
R Ly
N - (—l)N_mP\r (-cosd) Pv(cos*\-
%n ? —l(COSA) - P {-cosd . (70c¢)
0=0 " T -
2sinms P_(cosd)
AL = RE Al (70d)
23 A Ps_l(-coslﬁ)

3L 2
3 - (-L)N‘mPs_l(cosi) L g(-cosd)-
c A - o~
m;oym Py s osd) 5 _l(-cosﬁ) _ (70e)
N et 4 € P L(cosA)
4 = 2JU(< + €,) W siams =
33 2 8] PS-,(—COS 5 (701£)
fo T (708)
Ag. A,
- L (70h)
RN N (701)
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Equations (70) give the complete scatter matrix for a strip in a periodic
array once the ogs are determined from Equation (56). A few of the a;S are

calculated here for convenience.

1
Q’O =-3 (71a)
@, = 1 cosh (71b)
1 2
@, = % (coszA-l) (71c)
_ 1 3 (71d)
¥ =7 (cos™ A -cosh)

Equations (64) are used to obtain the scatter matrix of a single strip for

a given load termination Z, from the A-matrix derived above.

D. Examples:

We now have analytical expressions for the scatter matrix elements
for all frequencies and metallization ratios. 1In Ref. 19 the reflection
coefficient <Sll) per strip was computed at various stopbands for cpen- and
short-circuited arrays. 1In this section we will compare our results with
Ref. 19 at the fundamental and second harmonic stopbands.

(a) Fundamental stop-band: (s=.5, N = 0)
At the fundamental stop-band s = .5, N = 0. Using «, = - 1/2 from

0

Equation (71a) in Equations (70) we get the relevant A-matrix elements:

P .(-cosd) -
= _jjhvy o e (72a)
Ay = -3 7 Eosb + 3 J(-cos)
AL = 2] (72b)
13 v P .( P .(-cosd)
i e n _P A P_.s(cosA)P.S(-cosA)T
Ay =-Je(Er EOW.7 L _g(cosd) + P (-eosD) | (72¢)
P S(COSA)
Aq, 23w(€p+ Eo)w. P 5(-cosA) (72d)

o m AT .. bt
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Here, the Legendre polynomials Pl(cosA) = cosA and Po(cosA) = 1 have been
used. From Equations (64) we now write the reflection coefficient for the

open- and short-circuited array by setting Z=e and Z=0 respectively.

s I & T}
11} 11 A
7= 33
- P .(cosd) -
= i A—. E ; .5
J 717 L( cosd) + W—J (73a)
N |
b11}
7= = All
P _(-cosA) -
- .3 |
2 LG cosd + P_ 5(-cosA)_i (73b)

Equations (73) provide the reflection coefficient of an open- and short-
¢ircuited array at the fundamental stop-band as a function of metallization
ratio., These agree with the plots in Ref. 19
{b) Second Harmonic stop-band: (s=1, N=0)
For the second harmonic stop-band we may use s=0, ¥=1 or

35=1, N=0,; either choice yields the same result. 1I1a this case A13= 0 so that

is independent of the load Z which is expected intuitively. We have for 3

w

the second harmoanic scop-band,

S11 %M

(74)

NYE)

sin A

1]
- 13-
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E. Summary:

The scatter matrix of a single strip in a periodic array has been
derived analytically for all frequencies and metallization ratios. Analytical
expressions for the reflection coefficient of a strip in an open- and in a
short-circuited array at the fundamental and second harmonic stop-bands are

derived as special cases of the general results.

49




50

5. ELEMENT FACTOR FOR PERIODIC TRANSDUCER:
A, Introduction:
A large number of practical transducers are modeled as a periodic
array of metallic strips with arbitrary impressed voltages. It has been

shown(21’22)

that the response of such periodic transducer is written as the
product of an ''element factor'" and an "array factor'. The element factor

was obtained in Ref. 21 using the numerical tables of Ref, 23 which take the
effects of two neighboring electrodes into account. In this paper analytical
expressions for the element factor are obtained for all frequencies and
metallization ratios with the effects of all neighboring electrodes accounted
for. The response of the periodic transducer (neglecting regeneration and
reflection) is thus obtained analytically for all f requencies.

We first consider a phased array transducer (Fig. 13) in which the

voltages on all the electrodes have the same magnitude V but the phase

Vel2kop \selkop vV Ve ikoP \Je-i2kop
a
fe—

BN S Nt S
s

Fig, 13. A phased array transducer with a uniform phase progression of

knp per period.
progresses uniformly along the array at the rate of kop per period where
. . o th
p is the period. ‘The voltage on the n electrode, Vn is written as,

Vn =V exp(—Jnkop)

I

;o T
V oexp( Jnhnso) (75)




where s, is a dimensionless variable related to ku by,

s =k p/2n (76)
o] o]

It will be noticed from Equation (75) that adding any integer to s, yields
the same electrode voltages so that we may without loss of generality
restrict the values of s, such that

0< S, <1 (77

24)

The charge distribution in this transducer is known to be

2v sinnso = “i(s + n)®
QO) = T (€4 €) - v—ressk )P (cost) e7I(3,
P p o Ps-l'cos)m-w“
° (78)
where (1) 8 is a dimensionless variable related to z by
@ = 2m
p

(2) EP is the effective permittivity of the substrate and Eo
is the permittivity of the medium above the surface,
(3) 6=Tm
T being the metallization ratio and
4) Pv is the Legendre function of order v (integer or non-integer).
From Equation (78) we note that the Fourier transform Q(s) of Q(©) has delta

function components at all s given by s = s,t n, n being an integer.

Q(s) = a(so) . P (cosh) (79a)
where S =85 + n
o]
_ 2V sinnso
and Q(so) = Y (Ep + Go) ?;—tI?TEEEZY (79b)
o

Here s is the usual spatial harmonic k scaled by p/2m to make it dimen-
sionless. Fig. 14 shows a plot of a(s) against s for the phased array

transducer with electrode voltages given by (75).

n1
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Q(s)
Q(So)

Sin TSq
(-cosQ)

Qso) = & (ep+ &)
{ Pso-1

—

N
-
(@]
[0}
w
D
S

Ra(coss)  Rylcosa)

Pl(COSZS)
T Ra(cosa) T T P3{cosA)
L L 4 i il + 4 cae PG
-3 -2 A 0S5 1 2 3

Fig. 14. Fourier transform of charge distribution for a phased array

transducer.

The electrode current at each strip has the same magnitude but

with a phase progression along the array. The current, Dn at the nth

strip is written as

Dn = D0 exp(-JSOZnn) (80a)

where: D0 is obtained by integrating jw Q(®) over the width of a strip
+4
Dy = juW de Q(®)

Ps _l(cosA)
0

= jwwW (Gp + Eo) . 2V sinmus (80b)

- A
o Ps _1( cosd)
o
W is the length of a strip in the direction perpendicular to the
wave propagation.
Now, we wish to determine the charge distribution in a single
(21,22)

tap transducer (Fig. 15 since this yields the element factor. 1t is

casily seen that this is obtained by superposing the charge distributions

in an infinite number of phased array transducers each with V = 1, but with

13

[ i R th .

i s ovarving, uniformly from 0 to 1. The voltawe on the n clectrode is then
!

obtained from Kquation (75) as,
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v
{Do

¢ 1

Fig. 15. Electrode currents in a single tap transducer.
1h

J dsO exp(-JnZnso)

o

<
1}

1 forn=20

il

0 forn#0
which clearly describes the single tap structure in Fig. 15.

Hence the Fourier transform of the charge distribution in a
single tap structure is a continuous function of s given by,

2(6p + 60) sinnso

o(s,bd) = 5 PS _1(-cosA) . Pn(cosA) (81) :
(o]

where s=s;—n

such that 0 < So <1 and n is an integer. Fig. 16 shows sl/2 I (s,d)
plotted against 2s, for different values of the metallization ratio. These
agree reasonably with the numerical plots in Fig. 15 of Ref. 21 where 2s
corresponds to f/fo. The discrepancies are possible because only two near-
est neighbors were accounted for in the numerical method.

The capacitance of periodic transducers was obtained in Ref. 21 in
terms of the electrode currents, Dn (Fig. 15) in the single tap transducer.

These are readily obtained from Equation (80) by integrating over s, from

0 to 1.

p (cosh)

s - 1 .

¢ o |n2ﬂso
e

T ?H ) '(~CUSA) dSO

D = 2iwW (e + €Y . (82)
n " (3]
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Fig. 16. Element factor for different metallization ratios.
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In general the integral has to be obtained numerically. But for T = ,5,

cosh = 0; so that PS 1(cosA) = Ps _1(—cosA). Dn is then obtained analyti-
o

o]
cally as,
- 4 ~
Do = jwW (Ep + Eo) = (83a)
D
D =———9—2- (83b)
RS A

It is seen that while D0 is positive, all other Dn's are negative as expected.
It may be shown that, as expected, the sum of all the clectrode currents is
zero. ®
Y b =0
L

n
n=-o

B. Summary:

In Ref. 21 the conductance and capacitance of a periodic transducer
with arbitrary voltages were related to the charge distribution and the elec-
trode currents in a single tap transducer. However, these quantities were
obtained from numerical tables that take only two nearest neighbors into
account. In this section the charge distribution and the electrode currents
in a single tap transducer are obtained analytically considering the ecffects
of all the nearest neighbors, making the analysis more accurate and more
convenient. The overall charge distribution in a periodic transducer is
given by Equation (5) of Ref. 2! as the product (in k-space) or the convo-

lution (in x-space) of the voltage distribution and basic charge distribution

function (BCDF); the BCDF is now known exactly from Equation (81),
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APPENDIX I: DELTERV and DELTERZ trom Scattering Param-ters:

In this report the scatrering piarameters have been derived tor a
single section in an infinite array. In this appendix, the impedance mis-
match & and the fractional change in velocity Av/v for an cquivalent trans-
mission model are derived for the S-parameters.

Let w be the radian f{requeucy, Vo the unperturbed surface wave
velocity, £ the length of one section and T the metallization ratin. In the
equivalent tranmsmission line model, the metal!lized sections have an impedance
and velocity different from the unmetallized sections (Fig. Al). 1In addition,
two susceptances jB are included at the edges ot the metallized section in
order to account for the even harmonic reflection which is not predicted by
the simple mismatched transmission line model.

A straightforward analysis shows that,

j8
s“eJ = i1AZ sinT® - B cosT8) (Ala)
jio _ . Av )
SlZe =1- 378 » (Alb
where 0 = wl/vO and N., B are normalized to the characteristic imped-
ance. Using these equatious A and Av/v are calculated i{rom S and S5,,.. It

11 12

will be noted that at the fundamental with T = .5, cosT@ = 0; so that B does
not enter the picture. On the other hand, at the second harmonic sin76 = 0
so that A7 does not enter the picture. At intermediate frequencies or tor

" other than .5 therc is no unique solution for &7 and B; however, it is

possible that a particular choice might result in values that are nearly

constant with T or with frequency.

A . 1
DEUTERYV and DELTERZ are obtained {rom %; and ézrfromtlm re]ations:(
2
DELTERY - & 4 &Y (Alc)
2 v

priters - 5 - B (A1)

SRGesuie e
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APPENDIX 1T1:

In this appendix we will evaluate the stress-displacement relation

for a thin periodic array of strips. lLet us first consider a particle dis-
- )
placement vector with a single spatial frequency e(n,.
n
v = 0" axpl-je™z) (A2a)
i i
o

where B( ) . B+ n . 2u/p

1f the thin layer were uniform rather than periodic the stresses 5 would also

(n)

have the same spatial frequency 8 . The relation between - and U can then

be expressed by a constant matrix [A(n)l such that

AW E A

N ‘§ Aij p , i=x,vy, 2 (A2b)
j=x
The matrix elements AE?) are known from a first-order perturbation analysis.(6)
(n) _ (m) o(n) ' ¢ 2, eo(n)q2 ,
‘ A =8 (8" 'h) !axx ptw /{8 7171 (A3a)
! (n) (n) . (n)
* n) _ n n , .
, AXZ = -B (8 h) @ . (A3b)
v}
(n) _ (n)  _(n) "
Azx = -8 (B "h) @ (A3¢)
(n) _ (m) (n) , , 2 (n) 42
A, =87 (870 o) - plw/{p )] (A3d)
A g gy (o (p(M) (A3e)
yy
i and the other Ai?) are zero, where p' is the mass-density of the strip material, ;
¥ and o' , @' , @' , a' have the dimensions of stiffness and are given by,
xx’ “xz’ Tzx’ Tzz
| 3
! o = S3/D (Ada)
{

a)zz - Sz/[) (A4H)




o' - 8/D (Abc)

ZX 3

a;z - Sz/n (A4d)
G (abe)
b2t st (wa)

[S'] is the compliance tensor of the strip material.

(3,4)

Now if the array of strips is periodic, it has been shown

that the stress may be written in terms of the particle displacements as,

YA
wi(z) = _Z Hg?) (2z) Uin) , i=x,v, 2 (A5)
j=x
where
L (n) () . (n) , df
by (z) = Axx f(z) - j (B "h) % dz (Aba)
,(n) . (n) , df
B, (z) = 37 (B "h) . dz (A6b)
() L oa(n) , df
b (2 =3 (@ 'h) o o (A6c)
, () _ o,y . (n) ,  df ,
L (z) = A, f(z) - j (B 'h) @5 (A6d)
sV Gy - A ) (Abe)
yy yy

(n)

and thoe other B
1}

. . : . df
the geometry of the strips and is shown in Fig. A2. The terms involving 1z

in Kquations (A6) represent delta functions at the edges of the strip; the

physical origin of these delta functions has been explained in References

3 oand 4, Multiplying Fquation (A4) by CjB(m)z

b

and using text Fquations (Ib) and 3a) we have,

[P R

are zero. lere f(z) is a rectangular function describing

integrating over one period
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+p/2
(Bh) . Li?’m) - % } BE?) () expli (8™ - g™y L) 4, (A7)
-p/2
Using BE?) (z) from Equations (A6), we get Ii? m)
(n m) , m.27 n.2m, | ;
= 8 L P c tag L+ B4 B e (A8a)
(n,m) _ ' n.2m 2m .
Lz = B @ (1 + Bp —=—)(1 + (n-m). BP) t oo (A8b)
(n,m) _ ' 4.2n
sz =8 Yox 1+ Bp Y+ (n-m). BP) fm-n (A8c)
(n,m) _ Qo2 ' m.2m n.2m | .
L™™ - g L—p cgtay, (LB B fE (A8d)
(n,m) — 1 2 h
Lyy =B [-p Cs] km-n (A8e)
Where,
+p/2
1 .o g(m) (n)
F == £(z) explj (B - B )z) dz
m-n P Ip/z
_ m Sin (m - n) a7
- el (A8T)

7 is the duty factor = a/p, B is the surface wave wavenumber and g is

(n,m)

the surface wave velocity. The other Lij are zero.

APPENDIX III:

In this appendix we will evaluate the stress-displacement relation
for a semi-infinite substrate. As discussed in the paper, the substrate
does not introduce any coupling between different spatial harmonics (Lquation
(5) of the text).

Let us consider a particle displacement vector with a single spatial
frequency B(n) = B+ n.2m/p. If we assume that the particle displacements

decay into the bulk from their surface values given by (A9) as an exponential




U-ay’ then from the tield equations we get three values of o. These
correspond to three clastic modes of the solid. The field equation is

written as,

3

\ 2
2
Z ) ———-——a B ew Yy (A9)
Bkt 5 %y

where, C is the stiffness tensor and p, the mass density of the substrate.

The coordinates x x., are used in place of x, y, z for convenience. If

1° 20 %3

we veplace the derivative operators by,

A/&1»~0

o/ax2 -

3l — 387

Lquation (AY9) becomes an algebraic cquation. The determinant is a sixth
order polynomial in @, so that by setting it equal to zero we get six values
of o of these three represent exponentially growing solutions and are re-

QRN CININ €D

jected. Corresponding to each of the other three a ",

we get
1 2
particle displacement vectors whose surface values are {u( )}, {u( )} and

{u(j)}. The total particle displacement {U} at the surface is a linear

combination of these.

ful = [u) . (A} (A10)

(3)] in

‘where, lul is the matrix formed by arranging {u(])}, {u(z)}, and {u
columns. {A} is a vector whose components Al’ A2’ A3 are constants repre-

senting the linear combination.

Now corresponding to each solution {u(l)}, {u(z)}, {u(B)}, we may

calculate the stress vector at the surface {T(l)}, {T(z)}, {T(3)}. the




total stress, v is written as a linear combination of these.
{r} = (1] {a} (A11)
Combining (A10) and (All),
-1 .
{3 = (1] [u]l™" (U} (A12)
comparing with text Equation (3b).
-1
(sl = (1] [u] : (A13)

The procedure outlined here may be used for any anisotropic substrate to

(

s . n,n . . .
obtain the matrix [S ’ )] relating the stress and displacement at a given

n .
spatial frequency B( ). For an isotropic substrate it is possible to obtain

analytical expressions for the matrix elements. The three values of « are

obtained as,

1/2
A (Al4a)
2 1/2
oD - o = g™y - k;) / (A14b) |
i
1/2 |
o - o = ({B(n)}2 ; kg) (Aldc) !
where, )
2w ]
Ky = _—Lx ! (Al5a)
2 w2
ko= 2P (A15b)
S B

where \ and p are the Lame' constants of the substrate. The matrix {u] is

given by,

A7




(ul] = , B 0 0
!
| o _]a(") oH (Al6)
Lo o2 ALY
The [T] matrix is obtained as,
(r) = o [ -1p™Wat® 0 0
0 2‘18(11)0{(2) Z{B(H)}Z _ ki (A17)
. S —
From (Al6) and (Al7) we get the [S]-matrix.
(a,n) _
S ex = WO (Al8a)
B a k2
g(a,n) o z S (A18b)
7 e
2 (n},2
{ -
R TN e R L Ml Ve
byz = juB 2 (A18c)
(B} - oo
S(n,n) _ _S(n,n) (A184)
zy vz
2
W ok
g(n,m) . S (Al8e)
zz (n)42
{871 - oo
The other Sg?’n) are zero. For an arbitrary anisotropic substrate analytical
expressions are not obtainable, but the matrix elements are numerically

(n)

evaluated for a given B

using the procedure outlined above.
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APPENDIX IV:

In this appendix the values of o are derived so as to satisfy

equations (7) and (8):

N+1 -
-jN8 ' -jn8® _
e * ) %) S P wep(cosbe =0 lel<a (19
m= n= -«
-in®
7 zb aﬁ 24 Pm»m—N—l(COSA)e = 0 A< [e] <7u
m= n= -o
(A20)
It is known from the properties of the Legendre polyncmial thatl,
-] . 6
Z s P (coshye ™ = g 8] <a (a21)
n-n n-m
n= -o
= .8
P (cosA)e3% = 0 t <ol <m
L _n-m
n= - (A22)

where m is any integer. From (A4) it is seen that (A2) is satisfied for
any choice of a;s.

In order to satisfy (Al) we choose a&s such that,
N+1

-jN8 |\ i -in@
e +mib QEXI SnPn+m_N_1(cosA)e

MN+1
(cosA.)e-Jna (A23)

ZD am Sn+m-N-1Pn+m-N—1
m= n= -

From equation (A3) we note that the right hand side is 0 for |8| < A.

Equation (AS5) yields,

M1
-iNe  § - :
e Y, Zo aB =0 lel <& (a2
m:
where,
+o . 08
=\ Mg ) -in
Qm éd \Sn Sn-(N+1-m) ?n+m-N-1(COSA)e

A9




=0 itm= N+ 1
N-m
\ -jn® .
=2 . P (cosle ifm <N+ 1
C n+m-N-1
n=0
Since N 0 it is apparent from Equation (A6) that SN can have any
arbitrary value, Leaving this term out,
N N-m
-jNB8 N ' -
eIVl e ) e eosmye I Lo
m=D n%D armes
o N N-n
ZiN - ing
i.e. eIV gy 70 amPn+m-V—l(COSA) =0
m%0 n=0 '
. -j® . -jN®
Equation each pou~r (e ) to 0 starting from e we get,
o = - 1/2 ‘ (A25)
0
A
mé,oampm-i~1(COSA> = O, L= 1 to N (A26)
Equation (A7) 1s written as,
£-1
2, = - a P (cosA)y, £ = 1 to N (A27)
2 enm L-m
m=0
noting that [’_I(COSA) = 1 and Pm~l—1= Pl-m,

APPENDIX V3
In this appendix the terminal voltage and current at a strip are
determined from the tangential electric field and the normal electrical dis-

placement. From Fquations (53a), (7¢) and (8),

N+l @ l
. m -js® [ -jN8 -jn® |
- J) = —_
DZ(J i 5 (s+N)®+€ le LO o Z n+m—N-l(COSA)e J] 1
n= |
Ml .
_oam . N -j(s+n)® ;
) (S‘N):+ © 0 % n Sn+m-N-1Pn+m-N—l(COSA)e (A28) ;
m=0)  n<-ew !




All

where Equation (AS5) has been used.

Integrating (A9),

N+1
i S P cosh ]
2(9) = (s+M)o, ) « ntm-N-17nem--1¢ ) o i(s+M) @
+ L m s+n
m?O n= -

Since the potential is uniform over a strip, the strip voltage V is

equal to ¢(0).

W1
- S P (cosA)
_ \ n+m-N-1 n+m-N-1
V= (S+N)®+ /, %m s+n
m=- n= -
M1 a . (-1)N+1-mnPN +S(—COsA)
= (s¥N) @ ) . r (A29)
+ éb sinms
m—

using the derivation in Ref. 7. The strip current is obtained by integrating
Dy(a) over one strip width. From Equation (10),

M1

: el -j(s+n) 6
I = je(€+ €)(s+N)¢ , « o (cosA)e
P 0 +d%O m J-Ané‘-m mm-N-1
Nfl
- j \ .
Jw(ep+ EO)(sb-N)®+mZ=_Dam am B, (cosb) (A30)

again using the result in Ref. 7.

APPENDIX VI:

In this appendix the following integral used in Equation (20)

is computed:

ST > 3

) s 3 -j(2s+n+N) @

J j d Lo Pn+m_N_1(cosA)e
-11 n=s -w
i 2sin W (2s+n+N)
: in n
We have, J =/ P y-1(c0s8). (2s+n+N) l

= - )

n

All




o]
= 2 sin 2smw . 2‘ (-1)

2N-m+1

[}

1

0+2N-m+1 Pn(cosA)

-@ 2s+n+2N-n+1

1

2sin 2smw ., (-1)
n=0

2N-m k¢4

n L
NN SR IR A CLED) v,y s Sl T panpepel)

25;in 2sm . (-1) P2N+25-m(COSA)'

using the definition of Legendre functions P
This yields,

J = 2m . P2N+28_m(cosA)

Al2

sinm(2MN+2s-m)

for non-integer v,

(A31)
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